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NOMENCLATURE

[A] Influence coefficient matrix (dimension N by N) (Eq. 36)

B Boundary condition vector (dimension N) (Eq. 36)

Bij Surface integration of the kernel K, over panel containing
collocation point i with respect to collocation point j, or
induced velocity potential at collocation point j due to
doublet distributed on surface panel containing collocation
point i (Eq. 35)

C.. Surface integration of the kernel K2 over panel containing
collocation point i with respect to collocation point j, or
induced velocity potential at collocation point j due to
doublet distributed on surface panel containing collocation
point i (Eq. 35)

C Local pressure coefficient, (p-p.)/(1/2 e VR2)

D Propeller diameter

EC Meanline ordinate of blade section (Table 1)

Er Half thickness ordinate of blade section (Table 1)

f, g Scalar fields possessing continuous second derivatives (Eq. 2)

fm Camber of section (Table 1)

ij Subscript used to denote quantities associated with the i-th, j-
th control point (Eq. 34)

Double subscript used to denote effect of j-th panel at i-th
control point (Eq. 35)

iG  Blade rake (Table 1)
Accesion For

J Advance coefficient, J - V/nD (Table 1) NTIS (',- -

DTIC lit!
KI,K2  Scalar kernel functions (Eq. 24) C,.... j

I3,K4  Vector kernel functions (Eq. 21) --- -

KQ Torque coefficient, K 0 = Q/Qn2D5  By
QDost bJ'.:

KT Thrust coefficient, K. = T/Qn2D4 AvJ!,i1i ,1ty Codes
Avdio Sndcor

I Section chordlength Dtt Specal
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NOMENCLATURE (Continued)

M Total number of surface panels used to approximate the wake
surface (Eq. 34)

N Total number of surface panels used to approximate the body
surface (Eq. 34)

-n Unit normal vector on S, positive pointing into Q

n Propeller revolutions per unit time

P A fixed point interior to the domain Q; also propeller section
pitch or total pressure at local position of blade

Q A source point interior of the domain Q, or Propeller torque

R Position vector of a field point on propeller blade surface

r Length of a vector t from point Q to P; also radial distance

S, S' Surface boundary associated with o, Q' (Eq. 4)

T Propeller thrust

t Thickness of section

V Water speed in tunnel test section

VA Speed of advance of propeller

Va Veloc _ty component normal to surface (Eq. 29)

VR Resultant inflow to blade section, [V2 + (2nnr)] 2

VS(P), Vd(P) Induced velocity vector at point P due to source strength a, and
due to doublet strength p located at Q, respectively (Eq. 22)

w subscript used to denote quantities associated with wake (Eq. 24)

x, y, z Coordinates of a point in the reference coordinate system

xC Fraction of chord from leading edge

X R Fraction of propeller radius

00 Subscript used to denote quantities associated with the on set
flow
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NOMENCLATURE (Continued)

£Radius of the sphere surrounding a singular point (Eq. 5a)

e Propeller section skew angle

IA Surface doublet density (Eq. 23)

Q Density of water

o Surface source density (Eq. 22)

0 Velocity potential (Eq. 3)

0 S 94d Induced velocity potential at point P from a o, M located at Q
(Eq. 23)

Q, Q' Domain of integration (Eq. 4)

co Angular velocity of propeller blade (Eq. 31)

V Vector gradient operator

Vp, VQ Vector gradient operator taken with respect to coordinate
points P and Q, respectively (Eq. 23)
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ABSTRACT

Panel methods and their underlying theory are reviewed with
regard to hydrodynamic analysis of propeller performance.
Green's identity is used to convert the differential Laplace's
equation into an integral equation. The velocity potential on
the surface of the lifting body can be expressed by
integrating the potential induced by source/doublet
singularities distributed over the surface. The numerical
discretizations of the boundary surface, singularity
distributions, the integral equation, and the formulation of
the panel method are discussed. The advantages of the
application of panel methods in viscous/inviscid interactive
procedure and propeller blade design are outlined. Results of
propeller blade analysis with the panel method are presented,
comparing the predictions of the VSAERO panel method
and a vortex lattice method with experimental data. The
panel method, which includes consideration of propeller hub
effects, gives predictions in good agreement with
experimental data.

ADMINISTRATIVE INFORMATION

This investigation was sponsored by the Chief of Naval Research, Office of
Naval Technology (Code OCNR23) under the Ship and Submarine Technology
Program, Program Element 62543N, ONT thrust area RS43-434 Propeller
Quieting. The work was performed at the David Taylor Research Center under
Work Unit 1508-001.

INTRODUCTION

Laplace's equation is one of the most frequently encountered equations in
the field of engineering. It governs the potential of an electrostatic field, the
stress function of torsion, and the potential of an incompressible inviscid
irrotational flow field. The methods of solution have been known for quite
some time and can be formulated in either differential or integral forms. The
exact solutions can be found for a number of problems with simplified
geometries. The problem of interest- marine propeller hydrodynamics- involves
extremely complicated geometries, and solutions can be obtained only
numerically. The availability of modern high-speed computing machinery and
the maturity of some numerical techniques have resulted in the recent
development of panel methods.'-

The panel method has a distinct advantage over the differential approaches,
such as finite-element or finite-difference methods, because the unknowns of the
panel method are situated only on the fluid/solid interface and not throughout
the external space. In principle, the method applies only to incompressible,
inviscid, and irrotational flow. However, due to recent developments of
inviscid/viscid interactive techniques, the application can be extended to
problems with mild boundary layer separation and cavitation. In the propeller
hydrodynamics application, when the geometry of a given propeller blade and its
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advance coefficient are specified, the panel method is capable of calculating the
pressure, lift, drag, and moment on blades,6 duct, or band. With the
implementation of a wake relaxation procedure, the wake contraction can also
be predicted.' If the total number of unknowns can be kept to a tolerable level,
the panel method can also be applied to the problems of propeller/rudder and
propeller/hull interactions.

In the propeller hydrodynamics application, as reported 6 earlier, the panel
method is capable of providing reliable surface pressure distributions in the
blade leading-edge region. It was also shown that the method is capable of
predicting the leading-edge pressure peak when the propeller is operating at off-
design advance ratio, although comparison with experimental data is
insufficient. The purpose of this report is to reinforce Hess's observations
through comparison of various solutions obtained by the panel method, the
lifting surface theory, the equivalent two-dimensional theory, and extensive
experimental data acquired at the David Taylor Research Center (DTRC). Some
details of the panel method formulation are outlined.

MATHEMATICAL BACKGROUND

GOVERNING EQUATIONS

For steady, inviscid, irrotational, and incompressible flows in the domain Q
bounded by the surface S, there exists a velocity potential that satisfies the
Laplace's equation, with appropriate boundary conditions at S,

V2 q-0 (1)

where

2 2 92 02=W + -W + -0z2

and x, y, and z are the orthogonal coordinate axes. The assumptions made in
deriving Eq. 1 and the consequence of the assumptions are described in the
Appendix.

BOUNDARY CONDITIONS

Two types of boundary conditions are often found in hydrodynamic
applications: (a) the Neuman-type boundary condition (specifying the derivative
of the potential 0) applied at the Kutta point or on the wetted surface and (b)
the Dirichlet-type boundary condition (specifying the potential) applied at the
internal flow to render a unique solution of external flow problems via Green's
third identity. The Dirichlet-type boundary condition may also arise in design
procedures in which the surface pressure distribution is specified.

The idealized flow and its boundaries can be represented as shown in Fig. 1.
On the solid surface, the velocity component normal to the surface is set to
zero for a nonpermeable condition, or to the boundary layer transpiration
velocity if inviscid/viscid interaction is implemented. Wakes that carry away the
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vorticity generated ,i the boundary layer on the body may be assumed to attach
to the sharp edges, such as the trailing edge, leading edge, tip, or a line of
separation. Suppose in Fig. 1 that the potential is ) in the external region 0,
02 in the internal region Q2, and 03 in the wake region Q3. The potentials 02
and 03 do not simulate the real flow; only their influences on the external region
are simulated.

INTEGRAL EQUATIONS

Suppose a domain Q is bounded by a surface S as shown in Fig. 2. If f and
g are any two similar fields which possess continuous second derivatives, then
Green's identity states

fQ (gV 2f- fV2g)dQ = fS (f'!.Vg- gn- VfdS (2)

with the unit vector ' normal to the surface S and pointing into the domain Q.
Suppose g is replaced by a velocity potential 0 that satisfies Laplace's equation
V2 =0 and f is replaced by I/r, where r is the length of a vectorI from any
source point Q interior to the domain Q to a fixed point P. The function 1/r
possesses second-order derivatives and satifies Laplace's equation V2(l /r)= 0 at all
P, except when P is interior to Q or on S.

When P is exterior to Q, straightforward application of Eq. 2 results in

fS [/r '-V-P-0nV(1/r)]dS = 0. (3)

When P is interior to Q, 1/r becomes singular as Q approaches P. The
singularity can be avoided by surrounding the fixed point P with a small sphere
of radius £, surface S', and volume Q', and applying Eq. 2 to the volume
Q-Q' and surface S + S', to obtain

J S [(I/r) 'nV0 - --¢n V (I/r)]dS = 0. (4)

As the radius F of the sphere surrounding P approaches zero, the following
limits can be obtained:

f (I/I)'V+ dS' - 0 (5a)
SI

and

fS 4ANTV (1/r) dS1 -" -4nO(P). (5b)

Equations 4 and 5 imply

4nO(P) = f [0T-V (l/r) - fir'V0]dS. (6)
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When P lies on the surface S, l/r becomes singular as Q approaches P. The
singularity can be avoided in a manner similar to that just described. If the
surface S is smooth (first-order derivatives are continuous), the following limits
can be obtained:

f (lI/E) Z*VO dS' - 0 (7a)
SI

and

f O'-V(l/r) dS' - 2n0(P). (7b)
SI

It is concluded that

l0: P lies exterior of Q

S (en-V (1/r) - 1/rI-VO) dS = 4aO(P): P lies interior of 2

2O(P): P lies on S. (8)

The function f in Eq. 2 was introduced by Green in solving Laplace's equation
V2g =0 and was called Green's function later by Riemann. It is clear from Eq. 8
that with the help of Green's function the potential at any fixed point P can be
expressed in terms of its value on the surface. Such a method of solving
Laplace's equation, as opposed to the method of using series of special
functions, is called the method of singularities.

The geometry of practical problems is complicated and often involves
multiple domains. Figure 1 represents the geometry of a lifting body problem. It
involves three distinct domains, 91, 2 and o 3. The domain o2 is the external
flow field, Q2 is the lifting body separated from Q by the boundary surface S 12'

and 23 is the wake separated from Q1 by the surface S13 and from W by the
surface S23 . As mentioned previously, the potentials 02 and 03 in °2 and f13 are
used to simulate effects on the external flow field 0, and not the real flow of a
lifting body or wake.

Consider a fixed point P lying in the external flow field 0 1 and apply Eq. 8
in terms of the potential 01:

4TiO(P) = fs12 - (1/r) RE .- 71 dS + fs 120,V(/r) dS

+ f - (l/r)-H'VO dS + fOl-lV(l/r) dS

13 13

+ f - (l/r)-V0 dS + fs A,"V(l/r) dS (9)
00

Since P lies in Q1 and i5 outside of Q2, and since, n= -t, on S12, Eq. 8 applied
in terms of the potential 02 gives
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O= -fs - (1/r) 'V 2 dS + I - 4t2-V(1/r) dS
12 -S12

+ fs -(1/r)n 2 V0 2 dS+ f 0 02"V(1/r) dS. (10)

23 W 23

Since P is outside of Q and = -n on S,3, if we apply Eq. 8 in terms of the
potential 0 3 we have

0= - fS -(l/r)IVo 3 dS + 3 - 3n0 V(/r)dS
13 S 13

+ f - (1/r)- 3o' dS + f 0,V 3-V(1/r) dS. (11)
23 23

Summing the contribution of all surfaces to the potential at point P, we have

4no(P) = £1 - (1/r) .(V,-VT 2 ) dS + J,1 (0,-0 2)'V(1/r) dS
is12 - s12

+ IS - (1/r)(V0I-V0 3 )dS + f (4)-0 3)n'V (I/r) dS

13 S13

+ f - (I/r) '(V0 2-Vol)dS + f(oz2- 3 )'V(/r)dS
S3 23

+ I - (1/r) .-V0, dS + f_ ,,V (1/r) dS. (12)
0 0

If the outer surface So lies infinitely far away from the other surfaces and the
point P lies near So, the contributions of surfaces S12' S,3, and S23 to the point P
become negligible and Eq. 12 becomes

4w. ="fo. (l/r) VO I dS + f cV (I/r) dS (13)

where 0. represents the unperturbed potential in the far field. If the wake is
assumed to be infinitely thin, the surface length $23 approaches zero and its
contribution to the potential at point P vanishes. The wake effect on the
potential at point P is represented by the surface integral on S,3 in Eq. 12:

s - (I/r) n(V0I-V0 3) dS + s (),-0 3)"1V (0/r) dS. (14)

Expression 14 can be decomposed to upper (+) and lower(-) surfaces:
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f (1/r) '(VO -V0D) dS + f (0+-+)' V (I/r) dS

13 13

+ f_ (l/r) M0V-.v--70)dS + f (01-4;)-'V (l/r)dS. (15)
13-S 3

In the limit of infinitesimal wake thickness, the following situations arise:

and

3 3

Equation 15 then becomes

is, (1/r)n+ (V0+-VO-) dS4 + i ( 0-0) '+V (I/r) dS. (16)

If the wakes are assumed to be nonload-carrying with no flow entrainment,
then the potential gradient across the wake surface is continuous and the first
term in Eq. 16 vanishes. The potential jump across the wake surface in the
second term in Eq. 16 can be replaced by AO and Eq. 12 can then be written as

4n(P) = fs - (I/r) n'-(VI-V402) dS + s (01-0 2) S,(V /r) dS

+ J, A0,V (I/r) dS + 4nO.. (17)
13

If P is on the surface of S ,2 the potential at P can be derived in a similar
manner by repeated application of Eq. 8; this gives

24,(P) + 2R0 2(P) = is (1/r) n, (V0,- V02) dS + is 1 (/r) (0,- 2)dS

+ ( A0,V (l/r) dS + 4no. (18)
is 13

where 0,(P) and 4 2(P) are the potentials at point P on the external and internal
sides of Q2 of the surface S, 2, respectively. Equation 18 can be rewritten in the
following two forms:

4nO,(P) fi fs - (I/r) ,'(V 1 -V0V2) dS + i ,V(I/r) (01-0)dS
12 1

+ 13 Ae,*V (I/r) dS + 40.' + 2n [4,(P)-0 2(P)], (19)

13

6



and

4wO2(P) - f1 - (1/r)n, ,V-V 2) dS + f -1n,'V (1/r) (01-)2) dS

+ f Vn A V (I/r) dS + 4nO.. - 2n [0 1(P)-C42(P)]. (20)
'S 13

The velocity at point P can be obtained by applying the VP operator (the
derivatives being evaluated with respect to the coordinates of point P) to Eqs.
17, 19, or 20, depending on the location of point P. For illustrative purposes,
the application of the Vp operator is as follows:

4iV2O,(P) = K3(Vo-V 2 )dS + 12

+ f K 4 &0 dS + 4nV. + 2n [Vp0,(P)- Vp(D2(P)]

13

= 4RV(P) (21)

where K3 [= -Vp(l/r) = "ru/] and K4 [= Vp[ t -V(1/r) ] = (ftVe)t/r31 are
vector kernel functions which depend only on the geometry and are independent
of flow or boundary conditions.

As a consequence of Green's identit: Eq. 19 and Eq. 21 show that O1 (P)
and V,(P), the potential and velocity of a field point P in the external region Q
or on the external surface of S, 2, can be expressed in terms of the distribution
of (VO - V0 2), (01 - 02) on S 2, and AO on he surface of the wake. The value
€,(P) or 4 (P) can be uniquely determined on- if boundary conditions for 02
on the internal flow region Q2 are specified. Z. boundary conditions for 0 2
depend on the physical problems encountered. They may also affect the
numerical error and stability of the solution of 0,(P) and V,(P).

A point source of strength a at source point Q induces a potential ¢0,(P)
and velocity V(P) at a point p7 such that

o (P) = 4nro

and

0 "r (22)

where r is the magnitude of the vector' pointing from Q to P. A doublet of
strength p at source point Q induces a potential Od(P) and velocity V(P) at
point P such that

7



d(P)= - 'V-V,((/r) = -VP(1/r)
4?4n

and Vd(P) - Vp[ -V (1/r)] (23)

where 'n is the normal along the axis of the doublet pointing from the negative
to the positive end of the doublet. The derivatives in the vector operator VP and
VQ are taken with respect to the coordinates of points P and Q, respectively.

With Eq. 22, the first integral on the right-hand side of Eq. 19 can be
interpreted as the potential induced at point P due to a source distribution on
surface $12 whose strength is equal to the boundary value of n'(VO, -V0 2).
With Eq. 23, the second integral of the same equation can be interpreted as the
potential induced at point P due to a distribution of doublets on S12 whose axes
lie along with the unit normal surface vector n, and whose strength is the
boundary value of - (01 - P2). Note that the derivatives of the vector operator A
in this integral are taken with respect to the coordinates of source point Q on
surface S12' Equation 19 can now be written as

4n0,(P) = fr, (K,o-Kjp) dS + fS 1iuK 2 dS

+ 4n0 .- 2na(P) (24)

where K, [= - (l/r)] and K2 [= In' .Vp(l/r) = n't/r0] are scalar kernel
functions which depend only on the geometry of the boundary and wake shape
and are independent of the flow and boundary conditions, and p. is the doublet
strength at the wake surface to be determined from a Kutta condition. Likewise,
Eq. 21 can be written as

4irV(P) =fK~o dS -i f Z dS +f K4,u dS + 41tV. + 2iro(P)n, (25)
1S2 S12 S13

where -n, is the outward normal at point P.
The concept of placing singularities such as sources and doublets of

specified strength over the boundary surfaces of a flow field forms the basis of
the surface singularity technique. As discussed previously, various assumptions
and boundary conditions regarding the internal field may be used to obtain a
unique solution for problems which are physically meaningful. Different
assumptions demand different solution techniques. The choice of assumption
depends on the nature of the problem, such as lifting or nonlifting bodies, thick
or thin wing sections, etc. If the integral equations are to be solved numerically,
the assumptions play an important role in the errors and accuracy of the
solutions. Some interesting and practical formulations are given in the following
sections.
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SOURCE-ONLY FORMULATION
This formulation was adopted by Hess and Smith 2 to solve the potential

flow about arbitrary nonlifting bodies. The internal potential 02 is assumed to
be continuous, and at the wetted surface it has the same value as the external
total potential (0, -402= 0 at S12 in Fig. 1). The normal derivative of 0 is
discontinuous at the surface. After the inner product of Eq. 25 and the normal
vector n, at point P has been taken and the terms grouped, Eq. 25 becomes

2no(P) + f (A3 ) ) dS = -4n (V.-V(P)) -'J. (26)
12

Equation 26 is an integral equation since the unknown source strength a appears
under an integral sign. The equation is identified as the Fredholm integral
equation of the second kind. Numerical discretization converts the integral
equation into a system of linear equations denoted by

[Ajo = b

where [A] is the influence coefficient matrix, and b is the boundary condition, o
is to be solved at the discretized points. With the presence of the singular term
2no(P) in Eq. 26, [A] becomes diagonal dominating and well conditioned.

DOUBLET-ONLY FORMULATION

The normal gradients of 401 and 02 are assumed to be equal at the wetted
surface, separating the region Q from the region Q2 (n. (V0 1- V02) = 0 at S,2).
After implementation of this assumption, the a terms vanish from Eqs. 24 and
25. This leads to the doublet-only formulation. Physically, this assumption
implies that the normal component of the velocity at the inner and outer
surfaces of the wetted surface S12 is continuous. If the wetted surface is solid,
then V3 = 0 at the inner surface and 02 becomes constant everywhere in o2.
After the a term has been dropped and the inner product with the normal vector
1 taken, Eq. 25 becomes

4:V(P)-3 = 4irV.-n. - dS + dS. (27)

12 13

Equation 27 is a Fredholm integral equation of the first kind with p to be
solved. Through numerical discretization, Eq. 27 can be converted to a system
of linear equations [A]y = b where [A] is singular; that is, the sum of the
elements- in every row is zero. The system of equations is not linearly
independent. To obtain a unique solution, an additional condition is required.
One of the conditions i3 to specify a fixed value of p at a given point on S .

SOURCE AND DOUBLET FORMULATION

Equation 20 expresses the potential at point P on surface S12 on the Q2 side
and can be rewritten in terms of source and doublet distributions as
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4n 2(P) = 1,1 (KIo1 - K~y) dS + 1 1 K2 dS + 2np(P) + 4nO. (28)
di12 13

where K1 and K 2 are the scalar kernel functions as defined in Eq. 24. The
obvious external boundary condition on the wetted surface is

n,.V41 = V. (29)

V. is zero if the surface is solid. As mentioned earlier, to obtain a unique
solution of Eq. 28, some assumption regarding the internal flow field should be
made. Johnson,' Bristow,9 and Maskew' , 10 have applied a Dirichlet condition to
the internal flow field and set 02 = 4,. With these defined internal and external
boundary conditions, the source strength on the surface can be written

a = n1v01 -V49 = V,-n.V.. (30)

Suppose the lifting body under consideration is a propeller blade which
rotates about an axis with angular velocity co. The analysis derived previously
still holds with respect to a moving frame fixed to the propeller blade. In this
moving frame fixed to the propeller, the boundary condition expressed in Eq. 29
becomes

" . VOI = V -n,.coxR (31)

where R is the position vector of point P on the surface of the propeller with
respect to the frame fixed to the propeller. Equation 30 becomes

o n, (VI -V0 2) = n-n, .V.-n'coxR. (32)

All quantities on the right-hand side of Eq. 32 are known. It is now clear that
application of the Dirichlet boundary condition on the internal region
determines the source strength a in Eq. 28. Equation 28 can be written as

2n(P)= - f K,a dS - fs ,p, dS + fs K.u(Q) dS (33)
S12 S13 S12

and Q is a source point on surface S12 excluding P. Equation 28 is a Fredholm
integral equation of the second kind and can be solved uniquely in terms of the
doublet strength p.

SOURCE AND VORTICITY FORMULATION

A constant-strength doublet panel is equivalent to a ring of line vortices
around the perimeter. Hess" proved in a more general case that a surface
doublet distribution of density y can be replaced by a vortex sheet (on the same
surface as the doublet sheet) plus a concentrated vortex filament around the
edge of the sheet. The vorticity' on the sheet can be related to the doublet as
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y = nXVp

where -3 is the unit normal vector of the surface and Vp is the gradient of the
doublet strength. The strength of the concentrated vortex filament around the
edge is equal to the local edge doublet strength.

In the three-dimensional case, the magnitude of the strength and the
direction of the vortex are unknown. Care must be taken to ensure that Kelvin's
circulation condition (zero divergence) is satisfied everywhere. The numerical
implementation of the vorticity formulation is more complicated than for the
source/doublet formulation. Bristow9 preferred the source/doublet formulation
over the source/vorticity formulation for the design problem.

Although all types of singularity distributions just discussed can be derived
directly or indirectly from Green's identity, the resulting numerical formulations
and accuracies are quite different. Bristow9 showed that the source/doubiet
distribution in general provides a source distribution milder than the source-only
solution and a doublet distribution milder than the doublet-only distribution. In
summary, the source/doublet distribution is attractive because

1. Relatively mild singularity distributions suppress the numerical
instabilities, which may otherwise be prevalent for these high lift geometries.

2. Direct relationships between velocity and singularity strengths on the
boundary surface simplify calculations; which facilitates implementation of the
boundary layer displacement formulation for inviscid/viscous interaction.

3. Singularity distributions vanish as the perturbation field vanishes,
thereby eliminating possible residual errors.

4. With a source/doublet distribution, it is easier to obtain a numerically
stable solution in the design problem.

NUMERICAL DISCRETIZATION
The conversion of a differential equation to an integral equation, illustrated

in a previous section, becomes a major technique for solving initial-value and
boundary-value problems of ordinary and partial differential equations. Only in
a limited number of cases can the Fredholm equation be solved in closed
analytical forms. In general, these equations must be solved numerically. The
Fredholm integral equation of the first kind is more difficult to solve than the
second kind. For this reason, the discretization of Eq. 33 with appropriate
boundary conditions will be addressed here. The complete discretization of the
problem involves three different tasks; (a) discretization of the boundary
condition, (b) discretization of surface geometry, and (c) discretization of the
singularity distribution.

DISCRETIZATION OF THE BOUNDARY CONDITION

A continuous solution of an integral equation demands that the boundary
condition be satisfied on the physical boundary in a continuous manner. With a
numerical approach, the boundary condition can be satisfied only at a finite
number of selective collocation points. Consequently, the velocity components
and potential at the physical surface between the collocation points are not
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likely to satisfy the imposed condition. For example, if the normal component
V. of the velocity is prescribed at the boundary, the discretized solution will give
the potential field that produces the correct velocity component only at the discretized
collocation points on the boundary. Between the collocation points, the calculated
potential field in general will give a value for V° that is quite different from the
physical one. This difference is sometimes referred to as leakage. The problem is
inherent in discretization. The leakage may not be eliminated completely but can
be reduced by using a more accurate surface discretization (more collocation
points when the surface normal vector varies rapidly and a smoother distribution
of singularity, such as provided by a higher order model).

DISCRETIZATION OF THE GEOMETRICAL SURFACE
The smooth continuous shape of the body surface is represented by a number

of plane quadrilateral panels whose corners are the projection of the surface points
on the panels. Use of a flat panel to approximate a curved surface, makes it
inevitable that geometrical discontinuities will exist on the surface of the panels
where the singularities are distributed. To approximate the continuous physical
surface meaningfully with a collection of flat panels, the deviations of the
surface points and their projection on the panel plane should be kept as small as
possible. On a surface area where curvature is large, small panels should be
used. The centroid of the panel plane can be taken as the collocation point on
which the boundary conditions are applied.

The collocation point on the centroid of the plane panel may not be on the physical
surface, and the unit normal vector of the panel may not be aligned with the normal
of the physical surface. The deviation between the true and numerical solution depends
on the distribution and orientations of the panels. It should be kept in mind
that the numerical solution is meaningful only at the collocation points.

DISCRETIZATION OF SINGULARITY DISTRIBUTION
The singularities described previously are distributed on the panel surface

rather than on the physical surface. The strengths of the singularities can be
constant or can vary continuously over the panel, depending on whether first- or
higher order approximations are used. For a simple singularity distribution, the
influence of a single panel of arbitrary shape at a given field point can be
computed entirely analytically. Some examples can be found in Hess and Smith'
and Newman.* The discontinuity of the source strength at the edge a of panel
may result in an erroneous velocity which becomes logarithmically unbounded in
the vicinity of the edge, and the discontinuity of the doublet strength may cause
a jump of potential and velocity near the edge. To reduce the error, a consistent higher
order approximation is required to provide continuous source and doublet strengths
on some points along the edge. The discontinuities of singularity strength may also
be eliminated by weighted averaging along a common panel edge. The improved
accuracy is obtained at the expense of computational effort. The accuracy of a
first-order approximation may be improved by using more panels on surface
regions where curvature changes rapidly. The choice of a first- or higher order
approximation should be decided by balancing cost and accuracy.

*Newman, J.N., "Distribution of Sources and Normal Dipoles Over a Quadrilateral Panel,"
(submitted for publication, 1966).
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NUMERICAL SOLUTION

Numerical discretization and solution of the integral equation, Eq. 33, are
discussed here. For illustration purposes, the singularities (source/doublet) are
assumed to have constant strength on a given panel. Suppose that the physical
surfaces are replaced with N flat panels and the wake surface is replaced with M
panels. Equation 33 can then be approximated as

N N M

2np= K^idS - Ko, dS- K (.)IKdS (34)

i=l S1 i=1 S.

where P. is the doublet strength on the panel, S, is the area of the panel, and a, is

the source strength. In the current example, o is known and assumed to be constant
over the panel area Si. Since the strengths of the singularities are constant on each
panel, they can be taken out of the integral signs in Eq. 34. The scale kernel K
and K2 can be integrated over the panel surface analytically.'-* Equation 34 can
then be written in a simplified form as

N N M

iffi iffi i=l
1#j

where B and C matrices are the surface integration of the kernel K, and K2 over
the panei containg field point i with respect to the field point j. Physically,
they express the potential induced at collocation point j by the source and doublet
distribution on the panel, which contains collocation point i. When the collocation
point j is sufficiently far away from point i, the full expression is replaced by a
simpler formulation which yields results within a reasonable tolerance.' The
doublet strength M, on the wake surface is determined from a Kutta condition.
Equation 35 can be written in matrix form

[A] X = B (36)

where [A) is the influence coefficient matrix which has a dimension of N by N, X
is the doublet strength column vector with dimension N, and B is the boundary
condition vector with dimension N. The singular term of the Fredholm integral
equation of the second kind makes the [A] matrix well conditioned (in general,
it is diagonal dominating).

In actual numerical computation, the assembly of the matrix [A] involves
the evaluation of B,, and C, and is very time consuming. [A] is a full matrix,
and the solution of Eq. 36 demands also a large amount of computing effort,
especially when the number of panels is large. The block Gauss-Seidel method
can be used in solving such a large system.

*Newman, J.N., "Distribution of Sources and Normal Dipoles Over a Quadrilateral Panel,"
(submitted for publication, 1986).
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VISCOUS/INVISCID INTERACTION

In virtually every aspect of hydrodynamic problems the viscous effects are
significant and must be accounted for. Although the Navier-Stokes equation
applies to such flows, it requires significant computational resources7 , especially
at high Reynolds number conditions. For this reason, simpler viscous/inviscid
interactive approaches were derived.

In a recent review paper on calculation methods for flow on airfoils,
Cebeci, Stewartson, and Whitelaw 2 concluded that the interactive approach is
more economical than the direct application of Reynolds-averaged two-
dimensional forms of the Navier-Stokes equations. In the interactive approach,
the flow is divided into an outer inviscid region and a thin viscous region near
the solid surface and around the wakes. The inviscid region can be
approximated by panel methods if the flow is irrotational. The interaction
between inner and outer regions can be established by two different methods.
The first method as presented by Mahgoub and Bradshaw, 3 is differential. The
regions are matched at an arbitrary line that encloses the solid surface. The
inner solution is obtained by finite-differencing the parabolized Navier-Stokes
equation, and the outer solution is obtained by the panel method. The second
method is integral. In this method, the inner region is not physically prescribed,
and the outer region contacts the solid surface directly. The viscous effect is
extended to the inviscid region by the deficit formulation, as described by
LeBalleur." Both differential and integral methods can able to calculate the flow
patterns beyond the separation points with reasonable accuracy. Both methods
can be extended to lifting body calculations in which the wake curvature effects
are also important. Although the differential method gives more detailed
information about the flow field, it is impractical for design purposes because of
the huge computational resource required. Kline, Cantwell, and Lilley" showed
that an integral boundary layer method need not be less accurate than methods
based on Reynolds averaged equations.

There are two popular models of the viscous displacement effect in integral
methods. One model requires the computation of boundary layer displacement
thickness, and the zero-normal-velocity boundary condition is then applied to
the modified geometry as described by Dutt and Sreekanth.16 The other model
was originally proposed by Lighthill.' 7 It applies a relatively simple transpiration
condition on the physical surface. The latter model is more practical if a panel
method is being used to compute the inviscid flow, since the matrix of influence
coefficients of Eq. 36 need not be computed during the interactive process once
it is set up. On the basis of the boundary transpiration concept, Green's derived
an entrainment method to predict the flow in a turbulent boundary layer. This
method has been further improved by East, 9 Lock and Firnin, 20 Le Balleur,"1

and Melnik and Brook 21 to account for flow separation. Other approaches
capable of treating flow separation were given by Dvorak, Maskew, and
Woodward,' Dvorak, Woodward, and Maskew,l and Maskew, Rao, and
Dvorak.' Application of a parel method to attached cavitation has been
reported by Franc and Michel."
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APPLICATION OF PANEL METHOD AS A DESIGN TOOL

One of the design-type problems involves the determination of body
contour that will produce a prescribed pressure distribution. The panel methods
have been successful in predicting flow pattern and surface pressure distribution
involving complicated geometries in potential flow, but they are not widely used
in designing lifting-surface elements. One of the reasons is that the design
problem is more complicated than the analysis problem, and the design
formulation is often unstable unless some precautions are taken. The other
reason is that, due to the non-linearity of the boundary conditions, an iterative
approach is needed to obtain a solution and the computing cost becomes
prohibitive. Several design methods based on the panel approach have been
reported in the past for designing wing section contours that will produce a
prescribed pressure distribution, 2 ' but not all are satisfactory. Some of the
drawbacks are (a) the calculations fail to coverage, (b) the design contour is
unrealistically wavy, and (c) computing cost is prohibitive. Slooff has discussed
several other design methods.

Bristow- 9 and Hawk" developed a perturbation analysis/design method for
analyzing a series of arbitrary small-geometry perturbations to a baseline
configuration and for designing a wing section that will produce a prescribed
pressure distribution. The method is based on the panel method with
source/doublet surface singularity distributions described previously (constant
source and quadratic doublet distribution). The authors reported that the
method is cost effective, accurate, and stable.

The perturbation analysis method was developed for efficient and accurate
analysis of a series of arbitrary small geometry perturbations to a baseline
configuration. The velocity potential for the perturbed configuration is obtained
by a first-order Taylor series expansion about the velocity potential of the
baseline configuration. Basically, it is a linear extrapolation procedure and
bypasses the two most expensive steps: (a) assembling the new influence
coefficient matrix, and (b) solving a large system of linear algebraic equations
for the velocity potential. The authors attributed the success of the method to
the fact that only the velocity potential-not velocity and pressure-is linearized
with respect to the geometry perturbation coordinate, and the nonlinear terms
are much smaller for velocity potential than for either velocity or pressure. The
method is applicable to large perturbations of wing thickness, camber, and twist.

The perturbation design method is the logical extension of the perturbation
analysis method already described. The design can be initiated from a baseline
geometry obtained from lifting surface theory. The geometry is perturbed in
such a manner that the pressure distribution on the perturbed surface satisfies a
"target" distribution. Iteration is required because the pressure is a nonlinear
function of the geometry perturbation. In each iteration cycle, there are two
major steps: (a) an analysis solution of the geometry; in the first iteration, the
analysis is performed on the baseline configuration; and (b) a modification of
the geometry. The first step follows the analysis procedure already described.
The modification of geometry in the second step is obtained, for example, by
requiring that the pressure distribution on the modified contour satisfies a
"target" distribution. The first-order Taylor series expansion of the velocity
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potential about the baseline geometry requires knowledge of the partial
derivatives of velocity potential with respect to the geometry coordinates. The
partial derivatives are calculated once only and then are stored for repetitive use during
the iteration procedure. Hawk and Bristow ° reported that the perturbation analysis
method is competitive in accuracy with that of conventional panel analysis
methods, the computing cost of each successive application is one order of
magnitude less, and the perturbation design method is efficient in calculating
three-dimensional wing section geometry corresponding to a prescribed pressure
distribution. Although the sample problems presented by Bristow' and Hawk"
are wing-section related, the extension of the method to propeller blade design is
straightforward.

SAMPLE CALCULATIONS
Lifting surface theory and equivalent two-dimensional theory have been

used' 32 to predict the pressure distribution on the surface of propeller blades.
Neither theory accounts for the effect of the hub. Due to this limitation in
design and analysis procedures, the hub effect is often greatly simplified or
ignored. Detailed knowledge of the pressure distribution on the blade surface-
especially around the leading edge-is important to cavitation inception
prediction. However, neither theory performed satisfactorily, especially at the
off-design conditions.

The panel method distributes the singularities on the surfaces of both the
blade and the hub. A hub with any arbitrary shape can be easily modeled as an
integrated part of a propeller. The geometry of the propeller unit can be
modeled in as much detail as the maximum number of panels allows, avoiding
the shortcoming suffered by the lifting surface theory.

Benchmark comparisons for the panel method calculations presented in this
report were performed using the experimental results previously reported at the
David Taylor Research Center (DTRC). Model tests were conducted with DTRC
Propeller 4718 with a hub/diameter ratio of 0.3. The propeller drawing is shown
in Fig. 3, with tabulated geometry listed in Table 1. The propeller was tested in
an open jet test section of the DTRC 36-in. variable-pressure water tunnel and
in open water in the DTRC high-speed towing basin. The measurements of the
pressure on the blade surface were taken at locations that were 0.5, 0.7, 0.8,
and 0.9 of the tip radius.

During the experiment," an extensive calibration program was conducted to
arrive at accurate calibrations for test purposes, and to investigate possible
systematic errors in pressure measurement instrumentation. For any single
calibration, the error band, based on a 9507o confidence level, was calculated
from the standard deviation relative to a straight line calculated sensitivity. It
was determined that the uncertainty of pressure measurements at low test speed
(6 knots) and at high test speed (I I knots) is ± 0.05 psi and ± 0.07 psi,
respectively. The detailed method of calibration can be found in Reference 33.

The panel method3'3 used in the calculations was the VSAERO code; it has
piecewise constant source and doublet formation as described previously. The exact
blade surface was approximated with 609 flat quadrilateral panels, and the hub
was approximated with 144 panels. The panelized propeller is shown in Fig. 4.
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To demonstrate the hub effect, the performances of the propeller without and
with a hub were calculated. The results were then compared with predictions
from lifting surface theory and with experimental data.

Comparisons were made between the measured surface pressure and
predictions from the lifting surface theory and from the panel method without
the hub. The results are shown in Fig. 5. In general, predictions using the panel
method were an improvement over the lifting surface theory. However,
predictions at the 0.5 radius were less than satisfactory. The large discrepancies
between the predictions and experimental data were attributed to the hub effect
that was not accounted for in the calculations.

With the hub model included, the pressure distributions were again
calculated by the panel method, and the results are shown in Fig. 6. The
agreement between the predictions and experimental data improved significantly,
especially at the 0.5 radial section where the hub effect is expected to be great.

The fluid accelerates as it passes the hub and influences the flow at the
blade sections. Locally, each blade section operates at an advance ratio that is
different from, and greater than, the design value. The difference is greatest
near the hub/blade junction and diminishes as the ratio r/R increases.
Qualitatively, the hub increases the pressure near the leading edge and decreases
the pressure near the trailing edge on the suction side and imposes the opposite
effect on the pressure side. The panel method predicts this effect correctly, and
the agreement with the experiment data is excellent.

Predictions of pressure distributions at off-design conditions were
calculated, and comparisons with predictions from lifting surface theory and
experimental data are shown in Figs. 7-9. The calculated pressure peaks at the
leading edge agree well with the experimental data.

CONCLUSIONS
It is demonstrated here that the panel method is an improvement over

lifting surface theory in predicting pressure distribution on propeller blade surface.
The most significant improvements are that (a) the panel method can accommodate
complicated hub geometry with relative ease and (b) it can provide more reliable
information near the leading edge where many other approaches have failed,
especially under off-design conditions. Although the formation of the panel code
VSAERO is first order in nature, the results agree with the experimental data
well. One computation (for a given advance coefficient J) requires 23 minutes
CPU on a VAX/780 michine.
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for xR = 0.8 at various fractions of chord x .
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Fig. 9e. xc = 0.8.
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Fig. 9f. x. = 0.9.

Fig. 9. (Continued)
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Table 1. Properties of Propeller 4718.

Blade Geometry & Design

Diameter D = 2.000 ft (0.610 m) Blade Thickness Fraction = 0.069
Rotation = Right Hand Design Advance Coefficient J = 0.751
Number of Blades Z = 3 Design Thrust Loading Coefficient CTh = 0.248
Hub/Diameter Ratio Dh/D = 0.30 Design Thrust Coefficient KT = 0.055
Expanded Area Ratio = 0.44 Design Torque Coefficient Ka = 0.0106

Blade Parameters

r/R c/D P/D 06 (deg) i6/D t/c t/D fM/c fM/D

0.3 0.187 0.718 -1.65 0.0 0.2497 0.0467 0.0 0.0
0.4 0.249 0.796 -4.05 0.0 0.1771 0.0441 0.0044 0.0011
0.5 0.311 0.855 -5.00 0.0 0.1280 0.0398 0.0085 0.0027
0.6 0.366 0.886 -3.50 0.0 0.0910 0.0333 0.0099 0.0036
0.7 0.403 0.888 0.40 0.0 0.0630 0.0254 0.0101 0.0041
0.8 0.409 0.870 5.75 0.0 0.0469 0.0192 0.0097 0.0090
0.9 0.365 0.825 12.40 0.0 0.0419 0.0153 0.0082 0,0030
0.95 0.311 0.786 16.10 0.0 0.0418 0.0130 0.0065 0.0020
1.0 0.070 0.734 20.00 0.0 0.0414 0.0029 0.0090 0.0006

Thickness & Camber Distribution

xC  ET/t" ./fMt

0.0000 0.0000 0.0000
0.005 0.0665 0.0423
0.0075 0.0812 0.0595
0.0125 0.1044 0.0907
0.025 0.1466 0.1586
0.05 0.2066 0.2712
0.075 0.2525 0.3657
0.1 0.2907 0.4482
0.15 0.352' 0.5869
0.2 0.4000 0.6993
0.25 0.4363 0.7905
0.3 0.4367 0.8635
0.35 0.4832 0.9202
0.4 0.4952 0.9615
0.45 0.5 0.9881
0.5 0.4962 1.0
0.55 0.4846 0.9971
0.6 0.4653 0.9786
0.65 0.4383 0.9434
0.7 0.4035 0.8892
0.75 0.3612 0.8121
0.8 0.3110 0.7027
085 0.2532 0.5425
0.9 0.1877 0.3586
0.95 0.1143 0.1713
0.975 0.0748 0.082
1.0 0.0333 0

NACA 66 section (DTNSRDC modified).
t NACA a - 0.8 meanline: the design procedure determines the magnitude of the

camber at each radius and uses the two-dimensional chordwise distribution of camber.
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APPENDIX

A fluid is incompressible if its particles maintain their density along their
paths, i.e., the substantial derivative of mass density Q is zero:

DtDt " 0. (A .1)

The principle of mass conservation requires that the net amount of mass flow
into a control volume per unit time be equal to the rate at which the mass in the
control volume is increasing. Thus

Se-F + V'Qu = 0. (A.2)

Equation A.I is the differential equation of continuity. The bold type denotes a vector
quantity J. From Eqs. A. 1 and A.2 it follows that for incompressible fluids the
equation of continuity is simply

V-u = 0, (A.3)

Whether or not the flow is steady and whether or not the fluid is homogeneous.
Furthermore, if the flow is irrotational, the circulation around a closed circuit is
zero,

fu-dx = 0. (A.4)

Therefore, u dx is an exact differential, which can be denoted by do, thus

u = VO. (A.5)

Equations A.3 and A.5 imply that the function 0 satisfies the Laplace equation,

V2  = 0. (A.6)

Equation A.6 is a kinematic condition; velocity components can be obtained
from its solution. The associated pressure, however, can be obtained only from
a dynamic condition, that is, the equation of motion. For propeller application,
it is more convenient tc express the equation of motion with respect to a
rotating frame that is fixed to the propeller axis. If the fluid is inviscid and the
reference frame is rotating with a constant angular velocity co about the x axis,
Newton's second law governing the flow becomes

u -- VQ- (A.7)

where F is the Coriolis acceleration vector, Q is the body force potential, and
r2 = y2 +
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The Coriolis acceleration vector FC (0, - 2ww, 2cov) is perpendicular to the
velocity vector (u, v, w). Hence its projection onto a streamline is zero. If the
flow is steady, then along a streamline s the equation of motion becomes

u 8 L_+Q y (A.8)

If Q is constant, integration of Eq. A.8 yields

p+ U 2 W o2r2

- + =constant along a streamline. (A.9)

The constant on the right-hand side of Eq. A.9 can be determined by the
upstream condition.

In summary, to derive at Eqs. A.6 and A.9, it was assumed that (1) the
fluid is incompressible and inviscid, and (2) the flow is irrotational and steady.
As a consequence, the flow solutions can be obtained from Eqs. A.6 and A.9
instead of from Eqs. A.2 and A.7. (Equations A.6 and A.9 are simplified forms
of Eqs. A.2 and A.7.) Equation A.6 is linear with linear boundary conditions
(without free surface); it can be solved very easily. The velocity components can
be determined from Eq. A.5, and the associated pressure calculated from Eq.
A.9. The nonlinearity of Eq. A.7 is reflected only in the nonlinearity of Eq.
A.9, and there it presents no difficulty at all because the nonlinear term is
clearly determined and only the pressure is to be evaluated.
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